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1 Introduction

The Union Closed Conjecture sounds simple enough, yet it’s surprisingly tricky
to crack. Its elusive nature adds to its allure, keeping mathematicians intrigued.
We say a family of sets is union-closed if the union of any two sets from the
family belongs to the family.

Let [n] = {1, 2, 3, . . . , n}, and let F ⊆ 2[n]. F is union-closed if for all
A,B ∈ F , A ∪B ∈ F

Union-Closed Conjecture:

If F is closed under union, ∃i ∈ {1, 2, 3, · · · , n} that belongs to atleast half
of the sets in F

One obvious question might pop into your mind. What’s special about 1/2?
It’s not hard to notice that the power set satisfies this property, and hence is a
natural motivation for formulating the problem this way.

2 Preliminaries

First, we fix some notation.
We now define the universe of F . U(F) :=

⋃
F∈F F . We also define the

following:

Fx = {F ∈ F : x ∈ F}
Fx̄ = F \ Fx

If F is union-closed, so are Fx and Fx̄

Intersection Formulation

There are several equivalent formulations of the Union-Closed Conjecture, one
of which is the Intersection-Closed Conjecture.

Let F be any union-closed family of sets. We construct the family D as
follows:

D = {U(F) \ F : F ∈ F}.

Then D is said to be an intersection-closed family. That is, if A,B ∈ D,
then A ∩B ∈ D.

Intersection-Closed Conjecture

If D is closed under intersection, ∃i ∈ {1, 2, 3, · · · , n} that belongs to atleast
half of the sets in D
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Call an element x ∈ U(F) abundant if |Fx| ≥ 1
2 |F| . Analogously, one can define

rare elements in the intersection-closed formulation: Call an element y ∈ U(D)
rare of |Dy| ≤ 1

2 |D|.
It is also safe to make the following assumptions for the sake of this exposition:

1. Let F be any family of sets. F necessarily needs to have finitely many
elements. Suppose we have a family F ′ = {k, k + 1, k + 2, · · · }, where
k ∈ N. Of course, we have no element occurring infinitely many times,
hence we restrict our attention to families with finitely many elements.

2. The universe U(F) is finite as well.

3. Any union closed set can always contain ∅

Definition. A union closed set F is said to be separating if for any two elements
in the family, there exists a member set containing exactly one of them.

3 Some examples:

Firstly, let us take a simple example to see what is being stated here. Consider
P(S), where S = {1, 2, 3, 4}. Then,

P(S) = {{∅} , {1} , {2} , {3} , {1, 2} , {2, 3} , {1, 3} , {1, 2, 3} , {2, 3, 4} , {1, 3, 4} , {1, 2, 3, 4}} .

Consider the element {1}, it is present in 8 member sets, thus verifying the con-
jecture. We now state a few applications of the conjecture in several scenarios;

1. Given a finite collection of colors, if every pair of colors can be mixed to
produce another color in the collection, then at least half of the colors can
be obtained by mixing just two colors from the collection.

2. Let G be a finite simple graph (i.e., the edge set and vertex set are finite
sets). If, for every pair of edges a and b , there exist a vertex v such
that vertex v is incident to either edge a or b, then there exist a vertex v
incident to atleast half of the edges of G.

3. Consider a positive integer n and the family of all divisors of n, including 1
and n itself. If this family is closed under taking unions, then there exists
a divisor of n that divides at least half of the divisors of n.

4. Let G be a finite graph, and consider the family of all subgraphs of G,
including G itself and the empty graph. If this family is closed under
taking unions of subgraphs, there exists a vertex in G that appears in at
least half of the subgraphs in the family.

5. Given a finite group G, is there an element of prime power order which is
contained in at most half the subgroups of G?

6. Let G be a finite solvable group. Then there is an element whose order is
a prime power that is contained in at most half the subgroups of G.

3



4 A Brief History

The conjecture is generally attributed to Frankl, and hence it is also called
as Frankl’s Conjecture. Several mathematicians, however, also consider it to
be well-known and a ’folklore’. Regardless, the conjecture has spread far and
wide, with a diverse group of mathematicians applying a myriad of techniques
to tackle this seemingly simple problem. There was also a PolyMath project
initiated by Prof. Timothy Gowers, a famed combinatorialist , which introduced
several strengthenings to the conjecture, as well as showed some to be false. We
will look into a few of these techniques in this report. There are a couple of
observations that have helped progress in resolving this conjecture:

5 Where’s the Bottleneck?

The simple formulation of the problem is one of the primary reasons why it is
hard to prove it: there are hardly any efficient techniques compared to brute
force. An induction based technique wouldn’t work, mostly because we lack
the one thing induction loves to exploit: structure. There are three main tech-
niques that are listed in this survey by Bruhn and Schaudt [20]: injections, local
configurations (Special cases that exploit structure) and averaging.

5.1 Injection

Injection is a comparatively simple technique: We define an injection using the
sets defined in Preliminaries. The main idea to note here is that the singleton
is always an abundant element.

Let F be a family of sets and x be an element such that {x} ∈ F . We define
the following injective map:

ϕ : Ax̄ −→ Ax

A 7→ A+ x

It is routine verification to check that this is injective. Then,

2|Ax| ≥ |Ax|+ |Ax| = |A|.

And hence, x is an abundant element. Such injections have been used to show
that the conjecture holds for several special cases, including that of chordal
bipartite graphs.

However, trying to generalise this, we fail very quickly: although 2 element
sets have atleast one abundant element, one can define a family of 3 element sets
that has a non abundant element. From there, we have managed to explicitly
construct families with k-element sets that do not have an abundant element.
Thus, we are not able to predict where an abundant element might occur!
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5.2 Special Cases

The next idea is to exploit the particular structure of certain subcases to prove
the conjectures for these cases alone. As we observed earlier, we are on the
lookout for abundant elements. We have the following result due to Poonen [6]:

Theorem. Let F ′ ⊆ [k] be a union closed family. Then every union closed
family F such that F ′ ⊆ F satisfies the conjecture. In particular, we can find
an abundant element of F in [k].

A further generalisation of this result was used to prove the case of subcubic
graphs. The conjecture has been verified for families with either few member
sets or few elements.

5.3 Averaging

Poonen [6] conjectured the following, which serve as the backbone for the aver-
aging paradigm:

Conjecture. Let F be a separating union closed family. If F ̸= 2[n], it contains
an element that appears in strictly more than half the members of F .

He also gave the following conjecture about the unique abundant element:

Conjecture. Let F be a separating union closed family. If ∃f ∈ F such that
a is abundant (and unique), then

F = {∅} ∪ {G+ f : G ⊆ U(F)− f}

An averaging technique can be used to overcome the obstacle of looking for
an abundant element. We have the following result:

Theorem. Let F be a family of sets, and let U(F) be its universe, as discussed
earlier. Then, the conjecture holds if

1
|F| ·

∑
F∈F |F | ≥ 1

2 |U(A)|

The average set size of any member of the family should be atleast half the
universe size, for the conjecture to hold. This is used in a few results, the most
important of which is below.

Theorem (Nishimura and Takahashi [1]). Let the size of the universe be m.
Let F be a union-closed family with more than 2m− 1

2

√
2m member sets. Then

F satisfies the Frankl conjecture.

We have this nice observation noted by Shayan Oveis Gharan during an
expository talk.

Theorem. If F is union closed, ∃i ∈ {1, 2, 3, .., n} that belongs to atleast 1√
2n

fraction of non-empty sets in F .
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Theorem (David Reimer [2]). If F is union closed,
∑

F∈F [|F |] ≥ log2(|F|)
2 · |F|

In particular, ∃i ∈ {1, 2, · · · , n} that belongs to atleast log2(|F|)
2 fraction of

sets in F . A few bounds stronger than Reimer’s have been found, but this
pretty much does the job for us. To conclude this section, we state the following
result:

Theorem. Let F be a separating family on m elements. If F has at most 2m
member sets, then it satisfies the Frankl conjecture.

This result is due to a theorem by Falgas-Ravry [3]
A lot of work has been done in the averaging case. For more such results,

we direct the reader to the work of Reimer [2]

6 Classes for which the Conjecture holds

One natural way of attacking any problem is by finding smaller subclasses for
which the conjecture holds . Let F ⊆ 2[n] be any union-closed family of sets.
There has been some progress when we make some strong assumptions about
F . Let k = |F|, and let m = |U(F)|, where U(F) = ∪F∈FF

• Zivkovic and Vuckovic [7] demonstrated that F has atmost 12 elements
or at most 50 member sets.

• If F is separating, n ≤ 2m

• Balla, Bollabas, and Eccles [4] have shown that the conjecture holds when
|F| ≥ 2

32
n.

• Karpas improved this by showing that it holds for |F| ≥ 2n−1

One of the best known lower bounds for a long time was due to Knill.

Theorem (Knill [9]). Any union closed family F ⊆ 2[n] has an element of
frequency atleast n−1

log2(n)

Wojick [10] improved this bound to 2.4
log2(n)

. Asymptotically, one can just say

that there is an element contained in Ω( |F|
log2(|F)| )

We have also managed to make use of bounds on the size of the universe
itself.

Theorem (Lo Faro [8]). Suppose Frankl’s Conjecture fails. Let F be one such
counterexample. Let m = min {|U(F|)}, the minimum over all such counterex-
amples. Then any counterexample has atleast 4m− 1 member sets.
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7 Graph Formulation

One can formulate the Union-Closed conjecture in the context of graphs as well.
An independent set of a graph G is a subset S ⊆ V of the vertex set V such that
no two vertices in the set are adjacent. An independent set in which no vertex
of G can be added without violating this condition is said to be maximal. The
below conjecture and following results are due to Bruhn et. al [12]. We restate
the conjecture as:

Any bipartite graph with at least one edge contains in each of its vertex
sets a vertex that lies in at most half of the maximal independent sets

This formulation can be shown equivalent to the Intersection-Closed conjecture
stated earlier. Although admittedly this doesn’t look very nice, this gives some
much needed structure to the conjecture, which until now we have only viewed
from a set theoretic lens.

The above conjecture has been verified for several classes of graphs, which
we simply state below without much exposition.

1. A chordal bipartite graph is one in which every cycle of length 6 has a
chord (an edge that is not part of the cycle but connects two vertices of
the cycle). Chordal Bipartite Graphs satisfy Frankl’s conjecture.

2. A bipartite graph in which the occurrence of an edge between two vertices
of the vertex sets is determined randomly with some probability p ∈ (0, 1)
is called a random bipartite graphs. Suppose p is fixed. Then, ∀δ > 0
almost every random bipartite graph satisfies Frankl’s conjecture upto δ.

3. If every vertex of a graph has degree atmost 3, call it subcubic. Subcubic
graphs satisfy Frankl’s conjecture.

8 Lattice Formulation

The conjecture can also be reframed in terms of lattices. We recall some basic
order theory. A poset (L,≤) is called a lattice if every 2-element subset of
L has a unique greatest lower bound (call this the meet), and a unique least
upper bound (call this the join). A simple example would be the collection
of all subsets of a set A ordered using the subset inclusion. From the Hasse
Diagram, we figure out the infimum is the set intersection operation, whereas
the supremum is the set union operation. In this section we consider only finite
lattices.

Let L be a finite lattice with atleast 2 elements. Then ∃x ∈ L such that x
is not the join of any two smaller elements in L. Moreover, the number of
elements greater than or equal to x (according to the order) is at most half
of the (cardinality of) the lattice.
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It was showed that this conjecture is equivalent to the Union Closed Conjec-
ture. This formulation is important: we have a very useful tool- the inclusion
operator between sets. This also gives us ideas to think of more special cases.

This was then used to show that certain subclasses of lattices satisfy the
union-closed conjecture. Poonen [6] and Rival [16] showed that it holds for
geometric lattices. In the earlier days, most of these were not proofs but ver-
ifications of special cases. Abe and Nakano [18] showed that the conjecture
holds for certain classes called modular lattices. Reinhold [19] generalised this
further to lower semimodular lattices. However, most types of lattices remain
unconquered.

9 Salzborn Formulation

This is an equivalent formulation of the union-closed sets conjecture due to
Salzborn. The main advantage of this formulation is that it only concerns a
subclass of union-closed families, which we call normalized.
Note:

1. A must have at least |U(A)| non-empty sets to separate all elements of its
universe.

2. If ∅ ∈ A, then A will have at least |U(A)|+ 1 sets.

Definition. A union closed family N is called normalized if ∅ ∈ N , N is
separating and |U(N )| = |N | − 1.

Conjecture (Salzborn [11]). Any normalized family N ̸= {∅} contains a basis
set B with |B| ≥ 1

2 |N |.

It was shown by Salzborn [11] and Poonen [6] that this is indeed equivalent
to the Union-Closed Conjecture.

10 Recent Progress!

More recently, there has been progress on finding a constant lower bound for
this conjecture. Gilmer [15] uses methods from Information Theory- particularly
several equalities pertaining to entropy, to show a constant lower bound. He
showed that for any union closed family F ⊆ 2[n],∃i ∈ [n] which is contained in
a 0.01 fraction of the sets in F . This was one of the first constant lower bounds
to be known. Of course, we are familiar with with the best prior bound given
by Knill and Wojick [9, 10]Although the bound of 0.01 is much further than the
0.5 that we need, this is progress in the right direction, using techniques that
hadn’t been used prior. Soon after, several groups of Mathematicians improved
on conjectures proposed by Gilmer in this paper. Will Sawin [13] improved the

bound from 0.01 to 3−
√
5

2 (≈ 0.38). Chase and Lovett [14] pushed this bound to
approximate union-closed systems, where for approximately all pairs of sets their
union belongs to the system, and showed that it is optimal for such systems.
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11 Where to from here?

The Union Closed Conjecture is one of the foremost problems that stands testa-
ment to the true beauty and versatility of mathematics: the problem is simple
to state, and techniques from several areas of mathematics have been used to re-
solve several cases of the conjecture. One can predict that there is promise from
employing techniques from information theory for resolving this conjecture. An-
other possible direction is the usage of techniques from pseudorandomness and
expander graphs: this is motivated from the case of random bipartite graphs.
There is another reformulation by El Zahar [17] in the context of hypergraphs.
More recently, several proofs in additive combinatorics and number theory are
being verified using proof assistants like Lean. Earlier too, proofs for some sub-
cases of the Frankl conjecture was verified using Isabelle, another automated
theorem prover. One can harness the power of such proof assistants for further
progress. Another possible direction that is not being looked at as much as it
should be, is the group theoretic perspective: we have laid out the formulation
in the Examples section. It can be shown that the conjecture holds for all finite
solvable groups. Looking at the problem from the perspective of finite simple
groups (or any algebra, really) might lend a fresh pair of eyes.
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