
Quantum Error Correction: A Brief Walk

Through Stabilizer Codes

ANAGHA G .

October 2023

Contents

1 Introduction 3

2 Literature Survey 3

3 Methodology 3

3.1 Motivation for Stabilizer Formalism 3

3.1.1 Shor’s Code . 5

3.2 Code Concatenation . 5

3.3 Preliminaries . 6

3.3.1 Some terminology: . 6

3.3.2 Group Theory . 6

3.3.3 Pauli Group . 7

3.3.4 Clifford Groups: . 7

3.4 An introduction to Stabilizer Codes 7

3.4.1 Stabilizer Group . 7

3.4.2 Stabilizer States . 8

3.4.3 Check matrix . 8

3.4.4 Unitary dynamics: . 9

3.4.5 Logical Operators . 9

3.5 Connections between Stabilizer Codes and Classical Linear Codes 9

3.6 Gottesman-Knill Theorem . 10

3.7 On the complexity of decoding quantum stabilizer codes 11

3.8 Importance of (non) stabilizer states for quantum computation . 11

3.9 Examples: . 12

1

3.9.1 3 qubit bit flip: . 12

3.9.2 3 Qubit Phase Flip . 12

3.9.3 Shor’s Code . 13

3.9.4 Steane Code: . 13

3.10 Implementation . 13

3.10.1 Construction of Encoding Circuit for Stabilizer Codes . . 14

3.11 Decoding circuit . 17

3.12 Conclusion . 19

References 21

2

1 Introduction

Quantum Error Correction is a core concept in Quantum Information Theory.

Efficient Quantum Algorithms exploit large scale quantum interference, which

is fragile due to the nature of qubits. This has the potential to restrict the kinds

of computations we can perform. There are several error correcting codes, but

we shall be focusing on the Stabilizer Code, which corresponds to its classical

analogue: linear codes. We will also take a look at a and attempt to implement

and analyze a few Stabilizer codes on Qiskit.

Classical error correction is well studied, and there have been quite a few

advances. However, in the quantum realm, we are bound by a few restrictions.

These include

• No cloning theorem: This prohibits us from copying quantum states.

This greatly restricts the types of operations we can perform on qubits.

• Measurement of quantum states in superposition leads to their destruc-

tion.

• Apart from bit flip errors, we also need to deal with phase flip errors.

These undoubtedly add another layer of complexity to error correction.

2 Literature Survey

The primary literature survey involved reading the basic concepts of error cor-

rection both classically and in the quantum world. This helped us build moti-

vation for the evolution of quantum error correction techniques [2, 13]. Then,

we understood the basics of Stabilizer formalism using [1, 9, 12]. The rest of

the report comprises of several interesting results pertaining to Quantum Sta-

bilizer Codes and Computational Complexity theory, which have implications

for both classical and quantum computation. Finally, we demonstrate encoding

and decoding stabilizer codes using one particular example: the Steane code.

3 Methodology

3.1 Motivation for Stabilizer Formalism

Consider the classic case of the three bit repetition code. This maps the binary

values 0 and 1 as follows:

3

0 7→ 000

1 7→ 111

Suppose we are in the classical world. A single bit flip might result in 1 being

encoded as 101. In this case, the actually bit sent is inferred using a minority

vote. Of course, our inference would be wrong in case of 2 bit flips. Another

way to do this would be through a parity check. We check the parity of all pairs

of bits. If some have an odd parity, then an error has occurred. We define the

distance of a code is the number of positions at which two codes might differ

from one another. Mathematically, this is given by d = 2t+1 where t represents

the number of errors the code can correct. We now move to the quantum world.

Here, things are a bit more complicated because bits are no longer in a

binary state but can in fact assume an infinite number of states, and hence

are subject to infinitely many errors. Digitization of errors is the process of

decomposing any continuous error into X and Z errors. This is fairly straight

forward to do: in the quantum world, we are subject to bit flips and phase flips.

Bit flips correspond to X errors, and phase flips to Z errors. We now return back

to our 3 bit repetition code, but in the quantum world. Consider the following

mapping:

|0⟩L = |000⟩ |1⟩L = |111⟩

and we have the quantum state

|Ψ⟩ = a |0⟩+ b |1⟩
|Ψ⟩L = a |0⟩L + b |1⟩L
|Ψ⟩ = a |000⟩+ b |111⟩

Suppose there is an X error on the first qubit:∣∣Ψ̄〉 = a |100⟩+ b |011⟩

We cannot take a majority vote here, because ’reading’ the message will read in

a total collapse of the quantum state. We resort to the parity check method. We

formally introduce the notion of parity checks for qubits. This is nothing but

the observable ZiZj . If there is a bit flip, it returns an eigenstate of -1, otherwise

returns a state of 1. Z errors are more complicated. Suppose there is a Z error

on the second qubit, this won’t work, because we will still be in the subspace

spanned by |000⟩ and |111⟩. We modify the previous code to detect only Z errors

now: we propose a change of basis from {|000⟩ , |111⟩} to {|+++⟩ , |− − −⟩},
and the parity check measuremenets from ZiZj to XiXj .

4

3.1.1 Shor’s Code

Combining these two, we obtain the Shor’s code. I will give a quick exposition

of what it entails here:

|0⟩L2
== 1

2
√
2
(|000⟩+ |111⟩)(|000⟩+ |111⟩)(|000⟩+ |111⟩)

|1⟩L2
== 1

2
√
2
(|000⟩ − |111⟩)(|000⟩ − |111⟩)(|000⟩ − |111⟩)

There is no X error if and only if for all pairs of qubits i and j belonging to

the same block ZiZj |Ψ⟩L2
= |Ψ⟩L2

For detecting Z error, define:

X̄ = XXX
¯|0⟩L1

= |1⟩L1
X̄1 = X1X2X3, X̄2 = X4X5X6, X̄3 = X7X8X9

Measure the parity X̄iX̄j ∀i, j ∈ {1, 2, 3} , i ̸= j. Then XiXj |Ψ⟩L2
= |Ψ⟩L2

in case there is no error.

The stabilizer formalism is an attempt to generalize these observations to

come up with new quantum error correcting codes. Before that, we will take a

quick detour into using code concatenation to correct multiple qubit errors.

3.2 Code Concatenation

To correct errors in multiple qubits, we generally employ code concatenation.

For example, Shor’s code is a [[9, 1, 3]] code. On concatenating with itself, we

get a [81, 1, 9]] code. Theoretical results tell us that we should be able to correct

upto
⌊
9−1
2

⌋
= 4 errors. An interesting observation is that a worst case two-qubit

or three qubit bit flip only causes a phase error. A four qubit bit flip doesn’t

even cause an error. We take a sample error:

Example: X1X2X10X11

• There are 81 qubits, divided into 9 level 1 blocks

• Each block is encoded via Shor’s code. Thus there are 9 encoded level 1

qubits

• Encode these once more to get 1 level 2 encoded qubit.

The basis states of this level 2 encoded qubit are:∣∣∣¯̄0〉 = (
∣∣000〉+ ∣∣111〉)(∣∣000〉+ ∣∣111〉)(∣∣000〉+ |111⟩)∣∣∣¯̄1〉 = (
∣∣000〉− ∣∣111〉)(∣∣000〉− ∣∣111〉)(∣∣000〉− ∣∣111〉)

5

The single bar states are the level 1 encoded qubits. We have the errorX1X2X10X11.

These are the two-qubit errors on the 1st and 2nd level 1 qubits. From our ob-

servations, these lead to only a phase error (after error detection and correction

at level 1). More particularly,

• X1X2 creates a phase error after correction on the first barred qubit

• X10X11 creates a phase error after correction on the second barred qubit

After level 1 correction, basis states look like∣∣∣¯̄0〉→ (| ¯000⟩+ (−1)2) | ¯111⟩)(| ¯000⟩+ | ¯111⟩)(| ¯000⟩+ | ¯111⟩)∣∣∣¯̄1〉→ (| ¯000⟩ − (−1)2 | ¯111⟩)(| ¯000⟩ − | ¯111⟩)(| ¯000⟩ − | ¯111⟩)

So in this case, the four qubit error got corrected in the first level itself. For

some other errors, the entire error might not get corrected at the first level itself.

Sometimes, a phase error will lead to distortion. Thus one needs to come up

with smart level one and level two corrections. There is no general algorithm

to do this kind of error correction for concatenated codes. There have been

some recent advances in quantum annealing regarding the same, however. An

optimal algorithm for this still remains an open problem.

3.3 Preliminaries

3.3.1 Some terminology:

An [[n, k, d]] code is a quantum error correction code . It encodes k qubits

in an n-qubit state such that any operation that maps any encoded state to

another acts on atleast d qubits. In other words, the code distance must be

d. Moreover, d=2t+1, where t is the maximum number of errors that can be

corrected.

3.3.2 Group Theory

We first lay down some basic terminology:

A group is a set equipped with an operation, denoted by (G, ·) such that for

elements a, b, c ∈ G, the following hold:

1. a · b ∈ G (closure)

2. a · (b · c) = (a · b) · c (associativity)

6

3. ∃e ∈ G such that a · e = e · a = a

4. For every element g1 ∈ G,∃g2 ∈ G such that g1 · g2 = e

3.3.3 Pauli Group

The Pauli operators on a single qubit are {I,X, Y, Z}. Then define the Pauli

group Pn.

Pn = {ωP1

⊗
P2

⊗
· · ·
⊗
Pn : Pi ∈ {I,X, Y, Z} , ω ∈ {±1,±i}}

One can observe that this group has 4n+1 elements. The elements of this group

satisfy the following properties:

1. ∀P ∈ Pn, P 2 = ±I

2. All the elements either commute or anti-commute. i.e., for any two ele-

ments P,Q ∈ Pn, either of the two always hold: PQ = QP or PQ = −QP

3. The elements are all unitary

3.3.4 Clifford Groups:

The Clifford Group is a group generated by Hadamard, phase and C-NOT gates.

These gates normalize Pn. (Recall that the normalizer of a set (in a group) is a

set of elements that leave the elements fixed under conjugation).

3.4 An introduction to Stabilizer Codes

3.4.1 Stabilizer Group

A subset of a group that satisfies all the group axioms forms a subgroup. The

subgroup of the Pauli group that has

1. all elements that commute with each other

2. and that does not contain −I

, forms the stabilizer group. Any group can be represented by its generators. By

generator, we shall refer to the minimal set of elements that together generate

the entire group. Any group of size G can be represented by log(G) generators.

Because it is a minimal set, any element cannot be written as a product of two

different pairs of generators. Consider the following example:

7

S = {III, ZZI, ZIZ, IZZ}

S forms a stabilizer group. This can also be denoted by S = ⟨ZZI, ZIZ⟩ By

virtue of property 2, The stabilizer group is an abelian (commutative) group.

3.4.2 Stabilizer States

Given P ∈ Pn, a state |ψ⟩ such that P |ψ⟩ = |ψ⟩ is called a stabilizer state. All

states that satisfy this condition for all elements P ∈ Pn form a subspace on n

qubits called the stabilizer space Vs. Note the following:

1. Any linear combination of two(or more, for that matter) elements of Vs ∈
Vs. So Vs is a subspace of the n-qubit state space

2. Moreover, Vs is the intersection of the subspaces fixed by each operator in

S. In other words, it is the +1 eigenspace of all operators in a stabilizer

group.

3.4.3 Check matrix

Suppose S= ⟨g1, g2, · · · , gm⟩. One can define an m× 2n matrix where there are

m generators of the code, and n qubit codes. The LHS of the matrix contains

1s to indicate which generators contain X, same with the RHS to indicate Z.

Consider the construction of the ith row:

• If gi contains an I on the kth qubit, then the kth and n+kth column

elements are 0.

• If gi contains an X on the kth qubit, then the kth column element is a 1,

and the n+kth column element is a 0

• If gi contains a Z on the kth qubit, then the kth column element is a 0,

and the n+kth column element is a 1

• If gi contains a Y on the kth qubit, then the kth column element is a 1,

and the n+kth column element is also a 1

This doesn’t provide much new information, but is a simpler way of represen-

tation. This is a compact form, because in general it is very tedious to write

something like X ⊗X ⊗ Z etc

8

Proposition: The generators g1, g2, · · · gm are independent if and only if

the rows of the correspondent check matrix are linearly independent.

The Check matrix representation also helps us prove this very important

result:

Proposition: If there are m=n-k generators, then Vs is 2k dimensional.

3.4.4 Unitary dynamics:

Consider a vector space Vs stabilized by a group S. Let |ψ⟩ ∈ Vs. ∀g ∈ S, we

have

U |ψ⟩ = Ug |ψ⟩ = UgU†U |ψ⟩

So, U |ψ⟩ is stabilized by gU† =⇒ UVs is stabilized by USU† =
{
UGU† : g ∈ S

}
Moreover, if S = ⟨g1, g2, · · · , gm⟩, then USU† =

〈
Ug1Y

†, Ug2U
†, · · · , UgmU†〉.

The change is stabilizer is nothing but the change in generators of the stabilizer.

Consider the case of the H gate:

HXH† = Z,HY H† = −Y,HZH† = X

On applying H gate to a quantum gate stabilized by Z(|0⟩), the resultant state

is stabilized by X(|+⟩). You can see how this formalism greatly simplifies things

for us when we are working with a larger number of qubits.

3.4.5 Logical Operators

We take a quick detour and define the logical X and Z operators. The operators

X̄andZ̄ are found by requiring two operators that commute with all the stabi-

lizers, but cannot be expressed as a product of the stabilizers. These two will

anticommute with each others. A way of computationally finding this would be

to draw out an M × 2N binary matrix, where M is the number of generators

and N is the number of qubits they act on. Each row corresponds to a different

generator, and we fill in 0/1 depending on whether X (or Z) are present in that

qubit for the first (second) N. After calculating this, simply find the null space

of this matrix modulo 2. These are different from the generators.

3.5 Connections between Stabilizer Codes and Classical

Linear Codes

It is very natural to notice the similarities between classical linear codes and

stabilizer codes. The same way most codes in the classical world are linear codes,

9

most codes in the quantum world are stabilizer codes. Quantum stabilizer codes

can be considered very closely related to binary linear codes (linear codes over

F2. Another striking similarity is the structure of generators of stabilzier codes

and the parity check matrices for classical linear codes. We introduced the

notion of check matrix for quantum codes because of the same.

3.6 Gottesman-Knill Theorem

Theorem 1 A quantum circuit using only the following elements can be

simulated efficiently on a classical computer:

1. Qubits prepared in their computational basis states

2. Clifford gates (Hadamard gates, CNOT gates, phase gate), and

3. Measurements in the computational basis.

This theorem is testament to the power of quantum computation. Quantum

systems with even highly entangled states can then be simulated on classical

computers. Therefore, a wide variety of error correcting codes can be specified

using the Stabilizer formalism. But of course, there are codes, that cannot be

specified using the same. We shall now outline a quick proof of the theorem:

Proof:

1. Start with a stabilizer state |ψ⟩ with stabilizer group Sψ generated by n

generators ⟨S1, S2, · · · , Sn⟩

2. Pick a generator of the Clifford Group, say u

3. Under the action of u, |ψ⟩ stabilized by some Sψ becomes u |ψ⟩

4. Then |ψ′⟩ = u |ψ⟩ can be described using Stabilizer group as: Sψ′ = uSψu
†

5. We now need to find uS1u
†, uS2u

†, · · · , uSnu†

6. The above step requires O(n2) operations on a classical computer.

7. If we have m such operations, then the computation can be done on a

classical computer in O(mn2)

8. If m=O(n), then simulating a stabilizer circuit on a classical computer

takes O(n3) time

It is also clear that preparation of qubits in computational basis states is essen-

tial for universal quantum computation.

10

3.7 On the complexity of decoding quantum stabilizer codes

In this investigation, we delve into the challenges of optimally decoding a quan-

tum stabilizer code. It is established that errors can be identified by measuring

specific operations, yielding an error syndrome. The objective is to ascertain

the most probable recovery given the observed syndrome. The classical counter-

part of this problem has been demonstrated to be NP-complete, and a similar

complexity is known for generic quantum codes. However, the inadequacy of

this approach lies in its failure to account for error degeneracy in the quantum

realm—where distinct errors can produce the same effect on the code. The

authors demonstrate that the truly optimal decoding strategy is significantly

more intricate: it is #P-complete. (Here, #P denotes the problem of counting

solutions to the decision problems in NP) Clearly, any #P problem is, at the

very least, as challenging as the corresponding NP-complete problem.

3.8 Importance of (non) stabilizer states for quantum com-

putation

The Gottesman-Knill theorem showed that stabilizer circuits can be simulated

efficiently on classical computers. Aaronson and Gottesman have shown the

following improvements:

1. They propose a speed-up in the algorithm by eliminating Gaussian Elim-

ination (which has the same complexity as matrix multiplication) by in-

troducing a blow up in the number of bits needed to represent a state

by a factor of 2. Thus the time needed to simulate a stabilizer circuit is

reduced from O(n3) to O(n2)

2. This problem is
⊕
L complete. (

⊕
L- parity-L is the set of languages ac-

cepted by a non-deterministic Turing machine that can (only) distinguish

between an even and odd number of acceptance paths in log-space. From

the Gottesman-Knill Theorem, it is clear that this problem was already⊕
L hard. They then showed that his problem itself was in

⊕
L, which

can also be interpreted as the class of problems that reduce to simulating

a polynomial-size CNOT circuit. Thus this result is strong evidence that

stabilizer circuits are probably not even universal for classical computa-

tion, and that we need to shift focus on studying non stabilizer circuits as

well.

11

An interesting follow up question to this result would be: Are there any

sets of quantum gates that are neither universal for quantum computa-

tion, nor can be simulated classically? There is ongoing research in this

direction. We can also think about the position of this problem if classical

post-processing is allowed (in which case, it would no longer be even in⊕
L)

Thus, all these results help us to narrow down where exactly stabilizer cir-

cuits lie in the realm of computational complexity.

3.9 Examples:

3.9.1 3 qubit bit flip:

We first take an elementary case: The 3 qubit bit flip.

S = ⟨ZZI, ZIZ⟩

The generator table is given by This is clearly a much simpler way of represen-

Element Operator
S1 ZZI
S2 ZIZ
X̄ XXX
Z̄ ZII

tation.

3.9.2 3 Qubit Phase Flip

Next, consider the 3 qubit phase flip code, used for correcting single bit phase

flips. It is clear that we need a change of basis using Hadamard gates. Appro-

priately,

Element Operator
S1 XXI
S2 XIX
X̄ XII
Z̄ ZZZ

12

3.9.3 Shor’s Code

Recall our earlier example of Shor’s code. It is a concatenation of the bit flip

and phase flip codes. Using the notation introduced earlier, it is a [[9, 1, 3]] code.

The Stabilizer is given by

Element Operator
S1 ZZIIIIIII
S2 ZIZIIIIII
S3 IIIZZIIII
S4 IIIZIZIII
S5 IIIIIIZZI
S6 IIIIIIZIZ
S7 XXXXXXIII
S8 XXXIIIXXX
X̄ XXXXXXXXX
Z̄ ZZZZZZZZZ

3.9.4 Steane Code:

The Steane Code is a [[7, 1, 3]] code. It is the dual of the Hamming code, which is

a classical code, and hence is very widely studied. It is used to correct arbitrary

single qubit errors. It has the following stabilizers:

Element Operator
S1 IIIXXXX
S2 IXXIIXX
S3 XIXIXIX
S4 IIIZZZZ
S5 IZZIIZZ
S6 ZIZIZIZ
X̄ XXXXXXX
Z̄ ZZZZZZZ

3.10 Implementation

We will be implementing certain stabilizer codes using the STAC library. This

can also be done via Qiskit, but using STAC made the code look more compact

and readable. For higher order qubits, the generation of circuits in Qiskit turned

out to be rather messy. The generator matrices of several codes are stored inside

STAC.

13

3.10.1 Construction of Encoding Circuit for Stabilizer Codes

We make use of Gottesman’s Algorithm to construct logical zero state of stabi-

lizer codes. This involves three broad steps:

1. Bring the generator matrix to the Standard Form

2. Construct logical operators of the code (as discussed earlier)

3. Determine the sequence of gates in the encoding circuit using Gottesman’s

algorithm

The first example we will consider here is of the Steane Code, which can be

represented as the [[7, 1, 3]] code.

import stac

import numpy as np

cd_stean = stac.CommonCodes.generate_code(’[[7,1,3]]’)

stac.print_matrix(cd_stean.generator_matrix, augmented=True)

This dispays the generator matrix for the Steane Code.

It has 6 generators, and 7 phsyical qubits. It encodes 7-6=1 logical qubit.

Now, print the Pauli form of the generators using:

stac.print_paulis(cd_stean.generator_matrix)

14

Follow the following steps to create an encoding circuit. Step 1: Bring the

generator matrix to the standard form. Because we are in the framework of

group theory, we can manipulate generators and qubits using one(or more) of

the following:

1. Replace one the generators gi by gigj . This corresponds to adding rows.

2. Reindex the generators. This corresponds to permuting rows of G

3. Reindex the physical qubits. This corresponds to permuting the columns.

First, bring the X part of the generator matrix to RREF, and then apply prop-

erty 2. Then,

G =

(
I A

∣∣ B C

0 0
∣∣ D E

)
Note that if the rank of the X part is r, then the blocks have

• r and m-r rows

• r and m-r columns

The next step is to bring E to RREF form, and then apply the properties listed

above.

G =

(
I A1 A2

∣∣ B C2 C2

0 0 0
∣∣ D I E2

)
We can simply use a library function for this:

cd_stean.construct_standard_form()

stac.print_matrix(cd_stean.standard_generator_matrix, augmented=True)

The standard form is:

Step 2: Construct logical operators of the code. Recall that these are

operators that can act directly on the encoded state.

15

Here is an algorithm given by Gottesman: The |BarX ′s are the rows of the

matrix X̄ =
(
0 ET2 I

∣∣ (ET2 C
T
1 + CT2) 0 0

)
and the Z̄ ′s are the rows

of the matrix Z̄ =
(
0 0 0

∣∣ AT2 0 I
)

cd_stean.construct_logical_operators()

print("Logical X =", cd_stean.logical_xs)

stac.print_paulis(cd_stean.logical_xs)

print("\nLogical Z =", cd_stean.logical_zs)

stac.print_paulis(cd_stean.logical_zs)

Step 3: Use the Gottesman Algorithm to find the sequence of gates Suppose

there are n qubits. Further let

• qubits 0 to n-k-1 be the ancilla (extra) bits in state |0⟩

• the k qubits n-k to n-1 be in some state |ψ⟩ (to be encoded)

The algorithm is as follows:

encoding_circuit = stac.Circuit.simple(n)

for i in range(k):

for j in range(r, n-k):

if cd.logical_xs[i, j]:

encoding_circuit.append("CX", n-k+i, j)

for i in range(r):

encoding_circuit.append(["H", i])

for j in range(n):

if i == j:

continue

if cd.standard_generators_x[i, j] and

cd.standard_generators_z[i, j]:

encoding_circuit.append("CX", i, j)

16

encoding_circuit.append("CZ", i, j)

elif cd.standard_generators_x[i, j]:

encoding_circuit.append("CX", i, j)

elif cd.standard_generators_z[i, j]:

encoding_circuit.append("CZ", i, j)

[12] Then, we apply the library function:

enc_circ = cd_stean.construct_encoding_circuit()

enc_circ.draw()

The circuit looks like:

The state produced is

|0̄⟩ = |0000000⟩+ |1100110⟩+ |1111000⟩+ |0011110⟩+ |1010101⟩+ |0110011⟩+
|0101101⟩+ |1001011⟩

Similarly, one can form logical 1 state by using the logical X̄ to flip the zero

state.

3.11 Decoding circuit

Now that we have the encoding circuit in hand, decoding is just running the

encoding circuit in reverse. Another way is using the Gottesman Decoding

algorithm. Here, the key is to add k extra qubits to our circuit to store our

decoded state there, instead of modifying it ’in place’. The steps are:

17

1. Compute standard form

2. Find the logical X̄ and Z̄ operations for the generator

3. Employ the following algorithm:

decoding_circuit = []

for i in range(len(logical_zs)):

for j in range(n):

if logical_zs[i, n+j]:

decoding_circuit.append(["cx", j, n+i])

for i in range(len(logical_xs)):

for j in range(n):

if logical_xs[i, j] and logical_xs[i, n+j]:

decoding_circuit.append(["cz", n+i, j])

decoding_circuit.append(["cx", n+i, j])

elif logical_xs[i, j]:

decoding_circuit.append(["cx", n+i, j])

elif logical_xs[i, n+j]:

decoding_circuit.append(["cz", n+i, j])

Using STAC,

cd_steane.construct_standard_form()

print("G =")

stac.print_matrix(cd_steane.standard_generator_matrix, augmented=True)

cd_steane.construct_logical_operators()

print("Logical X =")

stac.print_matrix(cd_steane.logical_xs, augmented=True)

18

print("Logical Z =")

stac.print_matrix(cd_steane.logical_zs, augmented=True)

dec_circ = cd_steane.construct_decoding_circuit()

dec_circ.draw()

Then, we can check the input state using

dec_circ.simulate()

The result is the state |0000000⟩ with an amplitude of 1, which is what we

expected.

3.12 Conclusion

In this exposition, we familiarized ourselves with the basics of quantum error

correction and stabilizer codes. We understood the convenience the stabilizer

19

formalism bestowed upon us, as well as the nice properties given by the group

structure for computations, as well as algorithms. We were also able to under-

stand the position of Stabilizer Circuits in classical and quantum computational

complexity. Finally, we studied classical algorithms given by Gottesman for en-

coding and decoding stabilizer circuits.

20

References

[1] Daniel Gottesman (1999) Stabilizer Codes and Quantum Error Correction

[2] Joschka Roffe (2019) Quantum error correction: an introductory guide Con-

temporary Physics, 60:3, 226-245, DOI: 10.1080/00107514.2019.1667078

[3] Pavithran Iyer, David Poulin. (2013). Hardness of decoding quantum sta-

bilizer codes https://arxiv.org/abs/1310.3235

[4] Aaronson, S., Gottesman, D. (2004). Improved simulation of stabilizer

circuits. Phys. Rev. A, 70, 052328

[5] Lecture notes by Dave Bacon

[6] Lecture Notes by Preskill

[7] A Short Introduction to Stabilizer Codes, Andreas Klappenecker

[8] Michael. E. Cuffaro, On the Significance of the Gottesman–Knill Theorem

[9] Arthur Pesah’s Blog on Quantum Computing

[10] Exposition by Madhur Tulsiani

[11] https://errorcorrectionzoo.org/

[12] STAC

[13] Nielsen, M. A., Chuang, I. L. (2010, December 9). Quantum Computation

and Quantum Information. Cambridge University Press.

21

https://thesis.library.caltech.edu/2900/2/THESIS.pdf
https://arxiv.org/abs/1310.3235
https://courses.cs.washington.edu/courses/cse599d/06wi/lecturenotes18.pdf
http://theory.caltech.edu/~preskill/ph229/notes/chap7.pdf
https://people.engr.tamu.edu/andreas-klappenecker/689/stabilizer.pdf
https://arthurpesah.me/tag-quantum-computing/
https://inst.eecs.berkeley.edu/%7Ecs191/fa05/projectreports/QECC1-report.pdf
https://errorcorrectionzoo.org/
https://github.com/abdullahkhalids/stac

	Introduction
	Literature Survey
	Methodology
	Motivation for Stabilizer Formalism
	Shor's Code

	Code Concatenation
	Preliminaries
	Some terminology:
	Group Theory
	Pauli Group
	Clifford Groups:

	An introduction to Stabilizer Codes
	Stabilizer Group
	Stabilizer States
	Check matrix
	Unitary dynamics:
	Logical Operators

	Connections between Stabilizer Codes and Classical Linear Codes
	Gottesman-Knill Theorem
	On the complexity of decoding quantum stabilizer codes
	Importance of (non) stabilizer states for quantum computation
	Examples:
	3 qubit bit flip:
	3 Qubit Phase Flip
	Shor's Code
	Steane Code:

	Implementation
	Construction of Encoding Circuit for Stabilizer Codes

	Decoding circuit
	Conclusion

	References

